Independence Sequences of Well-Covered Graphs: Non-Unimodality and the Roller-Coaster Conjecture

نویسندگان

  • T. S. Michael
  • William N. Traves
چکیده

A graph G is well-covered provided each maximal independent set of vertices has the same cardinality. The term sk of the independence sequence (s0, s1, . . . , sα) equals the number of independent k-sets of vertices of G. We investigate constraints on the linear orderings of the terms of the independence sequence of well-covered graphs. In particular, we provide a counterexample to the recent unimodality conjecture of Brown, Dilcher, and Nowakowski. We formulate the RollerCoaster Conjecture to describe the possible linear orderings of terms of the independence sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operations on Well-Covered Graphs and the Roller-Coaster Conjecture

A graph G is well-covered if every maximal independent set has the same cardinality. Let sk denote the number of independent sets of cardinality k, and define the independence polynomial of G to be S(G, z) = ∑ skz k. This paper develops a new graph theoretic operation called power magnification that preserves well-coveredness and has the effect of multiplying an independence polynomial by zc wh...

متن کامل

The Roller-Coaster Conjecture Revisited

A graph is well-covered if all its maximal independent sets are of the same cardinality [25]. If G is a well-covered graph, has at least two vertices, and G − v is well-covered for every vertex v, then G is a 1-well-covered graph [26]. We call G a λ-quasi-regularizable graph if λ · |S| ≤ |N (S)| for every independent set S of G. The independence polynomial I(G;x) is the generating function of i...

متن کامل

Maximal-clique partitions and the Roller Coaster Conjecture

A graph G is well-covered if every maximal independent set has the same cardinality q. Let ik(G) denote the number of independent sets of cardinality k in G. Brown, Dilcher, and Nowakowski conjectured that the independence sequence (i0(G), i1(G), . . . , iq(G)) was unimodal for any well-covered graph G with independence number q. Michael and Traves disproved this conjecture. Instead they posite...

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture

A graph G is well-covered if all its maximal stable sets have the same size, denoted by α(G) (M. D. Plummer, 1970). If sk denotes the number of stable sets of cardinality k in graph G, and α(G) is the size of a maximum stable set, then I(G;x) = α(G) ∑ k=0 skx k is the independence polynomial of G (I. Gutman and F. Harary, 1983). J. I. Brown, K. Dilcher and R. J. Nowakowski (2000) conjectured th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003